x^2=64/343

Simple and best practice solution for x^2=64/343 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2=64/343 equation:



x^2=64/343
We move all terms to the left:
x^2-(64/343)=0
We add all the numbers together, and all the variables
x^2-(+64/343)=0
We get rid of parentheses
x^2-64/343=0
We multiply all the terms by the denominator
x^2*343-64=0
Wy multiply elements
343x^2-64=0
a = 343; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·343·(-64)
Δ = 87808
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{87808}=\sqrt{12544*7}=\sqrt{12544}*\sqrt{7}=112\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-112\sqrt{7}}{2*343}=\frac{0-112\sqrt{7}}{686} =-\frac{112\sqrt{7}}{686} =-\frac{8\sqrt{7}}{49} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+112\sqrt{7}}{2*343}=\frac{0+112\sqrt{7}}{686} =\frac{112\sqrt{7}}{686} =\frac{8\sqrt{7}}{49} $

See similar equations:

| 5(-6)-4y=-18 | | 3a=134 | | 5(-7)-4y=-18 | | n-9/4=-13 | | -6-x+12x=x+6 | | 5(-8)-4y=-18 | | -8-13=15h-8h | | 5(-4)-4y=-18 | | 5(-1)-4y=-18 | | 2x^2+4=4x | | 50+2x=3x50+2x=3x | | 25x+4-3=7x-14 | | 5(-0)-4y=-18 | | 4x+4=9x–36 | | 5(0)-4y=-18 | | 2x-17=-2x-17 | | 26y-4-11y=15y=6 | | 3(5)^2x=21 | | 4y+10=-y+4 | | 3(5)^(2x)-1=20 | | 3x-15=-2 | | 5-6n+4n+7=30 | | -2-2y=-10 | | 0.4x-6+0.6x=-11 | | −3(2x−3)=(−6x+9) | | 2x+12=18-× | | -1-2y=-10 | | -0-2y=-10 | | 150=5(x+20) | | -2h^2+17h=21 | | 6x+8=3×-19 | | 8*9^x=35.68 |

Equations solver categories